BOLTED FLANGE AND SEALING IN ARCTIC ENVIRONMENT

EPERC International Conference on Pressure Equipment Innovation and Safety

Hubert LEJEUNE

Cetim

74 route de la Jonelière 44326 Nantes, France

hubert.lejeune@cetim.fr

Stéphane JAVANAUD

Cetim

74 route de la Jonelière 44326 Nantes, France

stephane.javanaud@cetim.fr

Kevin RICHARD

Cetim

74 route de la Jonelière 44326 Nantes, France

kevin.richard@cetim.fr

Oil&Gas exploration and production in low temperature arctic environment

- ► Arctic environment bring new questions on equipment design rules
- ➤ Sealing systems: key elements for safety, reliability and environmental impact
- Seals performances under low temperature not easily available from public sources

The ARCTICSEAL project:

- ► Involved sealing technologies:
 - ► Flange gaskets
 - ► Elastomeric "O" rings (not presented here)

ARCTICSEAL project description

Bolted flange gasket activity program

► Tested gasket material and types (selection of sponsors) :

Туре	Gasket material	Class
Sheet gasket	Fibre based	300
	PTFE based	300
	Graphite based A	300
	Graphite based B	300
	Graphite based C	300
Standard spiral wound gasket (SWG)	Metal/graphite	600
Low stress spiral wound gasket (LS SWG)	Metal/graphite	300

ARCTICSEAL project description

Bolted flange gasket activity program

- Gasket test under compression press (NPS 8 & 16 gasket sizes)
 - ► Low temperature mechanical & sealing tests
 - ► Additional test involving hot/cold thermal cycling before low temperature exposure
- ► Test on a dedicated NPS 8 flange connection exposed to quick heat-up after low temperature environment exposure

Gasket test under compression press

Low temperature gasket characterization test results

Close (or better) to T3 at initial loading

T2,5 fulfilled at lowest residual stress

- 20MPa/2900 Psi for SWG
- 10 MPa/1450 Psi for others

to transient test

BFJ exposed to quick heat-up after low temperature exposure

Test rig short description

- ➤ 2 ASME B16.5 NPS 8 Class 300 welding neck flanges (no test on SWG)
- ▶ 8.18 mm thick connected pipe

Tight connections for internal heating power + 1 connection for pressure supply

Tight connections for temperature measurement

	Material
Flange	A350 LF2
Pipe	A333 Gr6
Threaded rod	A320 L7
Nut	A194 Gr7

Strain gauges locations

+ 4/12 instrumented bolts

Test rig short description

Tightening with 12 bolt tensioners

BFJ exposed to quick heat-up after low temperature exposure

Test procedure

■ Quick internal heat-up (~5 minutes to reach 200°C on flange and pipe internal diameter).

 Natural cooling after temperature stabilization

FEA

- ► Thermal calculation: Internal heating elements @ 200°C and "heat transfer" elements
- Mechanical calculation
 - ► Tightening ("bolt load")
 - ► Mechanical contacts: Bolt/flange & Gasket/flange
 - ► Gasket modelling: « Gasket function » strain/stress curve

Thermal results 200 ► FEA thermal results ► EN1591-1 100 Selected times. 50 Average C: Stabilized low E: stabilized temperature form temperature Heat-up A: tightening tests ▶ Bolt & gasket = F: back to room flange ring - D: Heat-up transient temperature B: Gool down transient Flange 3 Elapsed time [hr] (Heat-up) TEST TOP1 TEST TOP4 TEST TOP3 TEST TOP5 TEST BOTTOM2 TEST BOTTOM3 TEST BOTTOM4 TEST BOTTOM5 -- FEA TOP1 ---FEA TOP3 -- FEA TOP4 -- FEA TOP5 ■ EN1591 - Top flange O EN1591 - bolts ▲ EN1591 - bottom flange TEST Inside Temperature

Bolt load results

Test results on the different tested gasket types

to leakage tests

Project outcomes (concerning flange gaskets):

- ➤ The selected commercial references can safely be used in arctic conditions by the sponsors
- Developed procedures and facilities are available for tests on other references
- ► Tests on instrumented BFJ for quick heat-up after low temperature exposure gave data for FEA thermo-mechanical model development (in progress)

Thank you to our sponsors!!

Any questions?

